Present Value, Future Value

Future Value = Present Value + Interest Amount
Interest Amount = Principal Amount x Interest Rate

Future Value of a Single Present Amount

Future Value $=$ Present Amount $\times(1+r)^{n}$
Future Value $=$ Present Amount \times Future Value (FV) factor for a single present amount
$F V$ factor for a single present amount $=(1+r)^{n}$
$r=$ interest rate or discount rate
$\mathrm{n}=$ number of periods

	$(1+r)$	$(1+r)$	$(1+r)$		$(1+r)$
PV at t	FV at t+1	FV at t+2	FV at t+3	$\ldots \ldots .$.	FV at $\mathrm{t}+\mathrm{n}$

FV at $t+1=P V x(1+r)$
FV at $\mathrm{t}+2=\mathrm{PV} \times(1+r) \times(1+r)=P V \times(1+r)^{2}$
$F V$ at $t+3=P V \times(1+r) \times(1+r) \times(1+r)=P V \times(1+r)^{3}$
FV at $t+n=P V x(1+r)^{n}$

Present Value of a Single Future Amount

Present Value $=$ Future Amount $\mathrm{x} \frac{1}{(1+\mathrm{r})^{\mathrm{n}}}$
Present Value $=$ Future Amount \times Present Value (PV) factor for a single future amount
$P V$ factor for a single future amount $=\frac{1}{(1+r)^{n}}$
$r=$ interest rate or discount rate
$\mathrm{n}=$ number of periods

	$(1+r)$	$(1+r)$	$(1+r)$		$(1+r)$
PV at t	FV at t+1	FV at t+2	FV at t+3	$\ldots \ldots .$.	FV at t+n

$P V$ at $t=F V$ at $t+1 \times \frac{1}{(1+r)}$
PV at $\mathrm{t}=\mathrm{FV}$ at $\mathrm{t}+2 \times \frac{1}{(1+\mathrm{r})^{2}}$
$P V$ at $t=F V$ at $t+3 \times \frac{1}{(1+r)^{3}}$
$P V$ at $t=F V$ at $t+n \times \frac{1}{(1+r)^{n}}$

Future Value of an Ordinary Annuity

Future Value $=$ Annuity Amount $x \frac{(1+r)^{\mathrm{n}}-1}{\mathrm{r}}$
Future Value $=$ Annuity Amount \times Future Value (FV) factor for an ordinary annuity
FV factor for an ordinary annuity $=\frac{(1+r)^{n}-1}{r}$
$r=$ interest rate or discount rate
$\mathrm{n}=$ number of periods

	$(1+r)$	$(1+r)$	$(1+r)$		$(1+r)$
PV at t	Annuity at $\mathrm{t}+1$	Annuity at $\mathrm{t}+2$	Annuity at $\mathrm{t}+3$	$\ldots \ldots$.	Annuity at $\mathrm{t}+\mathrm{n}$

Annuity at $\mathrm{t}+1=$ Annuity at $\mathrm{t}+2=$ Annuity at $\mathrm{t}+3=\ldots \ldots .=$ Annuity at $\mathrm{t}+\mathrm{n}$
Ordinary Annuity: Same amount is paid at the end of each period.
Future Value of an Ordinary Annuity
$=$ Annuity + Annuity $\times(1+r)+$ Annuity $\times(1+r)^{2}+$ Annuity $\times(1+r)^{3}+\ldots . .+$ Annuity $\times(1+r)^{n-1}$
$=$ Annuity $x\left[1+(1+r)+(1+r)^{2}+(1+r)^{3}+\ldots \ldots+(1+r)^{n-1}\right]$
$=$ Annuity $x \frac{(1+r)^{\mathrm{n}}-1}{\mathrm{r}}$
Geometric Series: $1+\mathrm{k}+\mathrm{k}^{2}+\mathrm{k}^{3}+\ldots \ldots . .+\mathrm{k}^{\mathrm{n}-1}=\frac{\left(1-\mathrm{k}^{\mathrm{n}}\right)}{1-\mathrm{k}}$

Present Value of an Ordinary Annuity

Present Value $=$ Annuity Amount $x\left(\frac{1-\frac{1}{(1+r)^{n}}}{r}\right)$
Present Value = Annuity Amount x Present Value (PV) factor for an ordinary annuity $P V$ factor for an ordinary annuity $=\left(\frac{1-\frac{1}{(1+r)^{n}}}{r}\right)$
$r=$ interest rate or discount rate
$\mathrm{n}=$ number of periods

	$(1+r)$	$(1+r)$	$(1+r)$		$(1+r)$
PV at t	Annuity at $t+1$	Annuity at $t+2$	Annuity at $t+3$	$\ldots \ldots$.	Annuity at $t+n$

$$
P V \text { at } t=F V \text { at } t+1 \times \frac{1}{(1+r)}
$$

Annuity at $t+1=$ Annuity at $t+2=$ Annuity at $t+3=$ \qquad = Annuity at $t+n$ Ordinary Annuity: Same amount is paid at the end of each period.

Present Value of an Ordinary Annuity
$=$ Annuity $\times \frac{1}{(1+r)}+$ Annuity $\times \frac{1}{(1+r)^{2}}+$ Annuity $\times \frac{1}{(1+r)^{3}}+\ldots \ldots+$ Annuity $\times \frac{1}{(1+r)^{n}}$
$=$ Annuity $x\left(\frac{1}{(1+r)}+\frac{1}{(1+r)^{2}}+\frac{1}{(1+r)^{3}}+\ldots \ldots+\frac{1}{(1+r)^{n}}\right)$
$=$ Annuity $x\left(\frac{1-\frac{1}{(1+r)^{n}}}{r}\right)$

As $n \rightarrow \infty, \quad\left(\frac{1-\frac{1}{(1+r)^{n}}}{r}\right) \rightarrow \frac{1}{r}$

Ordinary Annuity vs. Annuity Due

Ordinary annuity: Same amount is paid at the end of each period.
Annuity due: Same amount is paid at the beginning of each period.

